Андрей Смирнов
Время чтения: ~26 мин.
Просмотров: 3

Методы исследования биомеханики жевательной системы

29 Февраля в 19:51 —> 13084Электромиография (ЭМГ) — объективный метод исследования нейро-мышечной системы путем регистрации электрических потенциалов жевательных мышц, позволяющий оценить функциональное состояние зубочелюстной системы. Различают три основных метода ЭМГ: 1) интерференционный (поверхностный, суммарный, глобальный), при котором электроды накладывают на кожу; 2) локальный, при котором исследование проводят с применением игольчатых электродов; 3) стимуляционный, при котором проводят измерение скорости распространения электрического импульса от места его нанесения до другого участка стимулируемого нерва или иннервируемой им мышцы. Для суждения о состоянии жевательных мышц достаточно проведение интерференционной ЭМГ с помощью поверхностных электродов. Методика ЭМГ-исследования. ЭМГ-исследованиям жевательных мышц при стоматологических заболеваниях посвящено много работ [Персии Л.С, Хватова В.А., Ерохина И.Г., 1982; Петросов Ю.А., 1982; Хватова В.А., 1985; Малевич О.Е., Житний Н.И., 1991; Гречко В.Е. и др., 1994; Онопа Е.Н. и др., 2003; Bessette R. et al., 1971; Freesmey-erW., 1993]. Электрическую активность жевательных мышц регистрируют одновременно с двух сторон. Для отведения биопотенциалов используют поверхностные чашечковые электроды. Электроды фиксируют в области моторных точек (участки наибольшего напряжения мышц, которые определяют пальпаторно). Для записи ЭМГ применяют функциональные пробы. Регистрируют ЭМГ в физиологическом покое нижней челюсти, при сжатии челюстей в привычной окклюзии, произвольном и заданном жевании (рис. 3.57). Кроме того, изучают мандибулярный рефлекс (при постукивании неврологическим молоточком по подбородку по средней линии) при сжатии челюстей в положении центральной окклюзии. Мандибулярный рефлекс — время рефлекторного торможения активности жевательных мышц, имеет диагностическое значение (рис. 3.58). При анализе ЭМГ определяют следующие показатели: среднюю амплитуду биопотенциалов, количество жевательных движений в одном жевательном цикле, продолжительность одного жевательного цикла, время биоэлектрической активности (БЭА) и биоэлектрического покоя (БЭП) жевательной мускулатуры в фазе одного жевательного движения. Полученные данные сравнивают с показателями нормальной ЭМГ-активности жевательной мускулатуры. При электромиографии наружных крыловидных мышц используют концентрические игольчатые электроды. Каждый электрод — тонкая полая игла диаметром 0,45 мм, в которую введена проволока, изолированная от внешней оболочки на всем протяжении за исключением кончика. Перед введением игольчатые электроды выдерживают 30 мин в специальном стерилизаторе. В литературе описаны два способа введения электродов — внутри-ротовой и внеротовой. Внутриротовой метод технически трудно выполнить, он не точен и не дает возможность изучить активность мышц во время жевания. Внеротовой метод введения игольчатых электродов через полулунную вырезку нижней челюсти не позволяет осуществить запись ЭМГ во время функции жевания, так как игольчатый электрод проходит через сухожилие жевательной мышцы.

Похожие статьи

  • 29 Февраля в 15:40 36789—> Центральное соотношение челюстей

    В центральном соотношении челюстей имеются физиологическое взаимное расположение суставных головок, дисков, ямок и равномерная нагрузка на все структуры ВНЧС. Определение центрального соотношения..

    Гнатология

  • 01 Марта в 12:44 36329—> Гнатологическая терминология

    Аксиограф — прибор для записи движений нижней челюсти и определения суставных углов. Аксиография — метод нахождения шарнирной оси, записи движений нижней челюсти и определения суставных углов.

    Гнатология

КатегорииВидеоматериалы —> Новости

Графическая регистрация движений нижней челюсти, на основе которой были построены артикуляторы — первые механические модели опорно-двигательного аппарата жевательной системы, сыграла положительную роль. Конструирование зубных протезов, адаптированных к простейшим движениям нижней челюсти, неизмеримо повысившее качество протезирования, одновременно открыло новые перспективы перед теорией и практикой ортопедической стоматологии. Решение этих задач потребовало привлечения в клинику ортопедической стоматологии современных функциональных методов исследования опорно-двигательного аппарата.

Наиболее фундаментальные исследования биомеханики жевательной системы были проведены с помощью мастикациографии и электромиографии.

Мастикациография. Жевательный стереотип зависит от очень многих условий: характера артикуляции, прикуса, протяженности и топографии дефектов зубных рядов, наличия или отсутствия фиксированной высоты прикуса и, наконец, от конституциональных и психо-стенических особенностей пациента, сформировавшихся под воздействием названных условий. Мастикациография, позволяющая графически регистрировать динамику жевательных и нежевательных движений нижней челюсти, является методом объективного изучения этого стереотипа. С помощью мастикациографии можно изучать изменения биомеханики жевательной системы при аномалиях ее развития и при потере зубов, эффективность ортопедических и протетиче-ских мероприятий.

По характеру мастикациограмм можно судить не только о самых тонких изменениях в жевательной системе (интактности отдельных зубов, зубных рядов, аномалии прикуса), но и о типе высшей нервной деятельности исследуемого.

Мастикациограф и мастикациограмма одного жевательного периода в норме (по Рубинову)

Первая попытка записать движения нижней челюсти с помощью кимографа была предпринята Н. И. Красногорским (1906). Затем эта методика претерпела множество модификаций, и в настоящее время она выглядит сравнительно просто. Для получения мастикациограммы необходим механический или электрический кимограф с регистратором времени, а также резиновый баллон, заключенный в пластмассовый футляр, имеющий форму нижней челюсти (рис. 34). С помощью футляра баллон прижимают к подбородку и закрепляют на голове специальной повязкой. Баллон посредством резиновой трубки соединяют с мареевской капсулой, на которой укреплен писчик.

Независимо от индивидуальных особенностей на кимограмме различаются несколько фаз.

Первая фаза — фаза покоя, регистрируется до введения в полость рта пищевого раздражителя, характеризуется изолинией.

Вторая фаза обусловлена открыванием рта для принятия пищевого раздражителя. Ей соответствует первый подъем кимограммы, высота которого зависит от степени открывания рта, а крутизна — от продолжительности введения пищи в полость рта.

Третья фаза — фаза адаптации. Она характеризуется нисходящей, наиболее растянутой во времени кривой, нижнее колено которой лежит на уровне фазы покоя. Степень ее изломанности и общая длина после некоторого «плато» на вершине свидетельствуют о сложности приспособительного процесса к первоначальному измельчению пищи, который, с одной стороны, обусловлен консистенцией пищи, а с другой — полноценностью жевательного аппарата.

Четвертая фаза характеризуется относительно сходными, закономерно чередующимися волнами, амплитуда, частота и равномерность которых зависят, с одной стороны, от консистенции пищи, а с другой — от полноценности жевательного аппарата. Эта фаза называется основной. В каждой осцилляции этой фазы различают восходящее и нисходящее колено, из которых первое обусловлено опусканием нижней челюсти, а второе — приведением ее к исходному положению, т. е. до состояния центральной окклюзии. Вершина каждой волны соответствует пределу опускания нижней челюсти, а величина угла соответствует скорости перехода к подъему нижней челюсти.

В этой фазе при жевании мягкой пищи наблюдаются частые, равномерные подъемы и спуски жевательных волн. При жевании твердой пищи в начале фазы основной жевательной функции отмечаются более редкие спуски жевательной волны. Чем пища тверже и оказывает большее сопротивление, замедляя момент поднятия нижней челюсти, тем нисходящее колено более отлого.

Пятая фаза — фаза формирования комка с последующим проглатыванием его. Графически эта фаза отмечается волнообразной кривой с некоторым уменьшением размахов волн. Акт формирования комка и подготовка его к глотанию зависят от свойств пищи. После проглатывания пищевого комка устанавливается новое состояние покоя жевательного аппарата. Графически это состояние покоя представляется в виде горизонтальной линии. Она служит первой фазой следующего жевательного периода.

При пользовании методом мастикациографии следует правильно применять соответствующий регистрирующий аппарат.

Электромиография. В течение последних 10—15 лет электромиография как метод функционального исследования нервно-мышечной системы находит все более широкое применение не только в клинике нервных болезней, хирургии и анестезиологии, но и в стоматологической практике. Она используется в хирургической и ортопедической, стоматологии, стоматоневрологии как функциональный и диагностический методы исследования функции периферического нейромоторного аппарата и для оценки координации работы мышц челюстно-лицевой области во времени и по интенсивности, в норме и патологии при травмах и воспалительных заболеваниях челюстно-лицевой области; аномалиях прикуса, миопластических операциях, дистрофиях и гипертрофиях жевательных мышц, расщелинах мягкого неба и др.

Этот метод основан на регистрации потенциалов действия мышечных волокон, функционирующих в составе двигательных единиц, состоящих из мотонейрона и группы мышечных волокон, иннервируемых этим мотонейроном. Электромиограмма — это графическое выражение биоэлектрической активности, которая сопровождает все основные жизненные процессы и является универсальным и наиболее точным показателем течения любых физиологических функций.

В возникновении биоэлектрической активности мышц решающую роль играет изменение ионной проницаемости мембран мышечных волокон для ионов К+ и Na+, а также ионов СL- и Са2— В связи с различным содержанием ионов К+ и Na+ внутри мышечных волокон и в межклеточной жидкости в состоянии покоя существует разность потенциалов между внутренней и наружной поверхностями мембраны мышечного волокна (потенциал покоя). В результате прохождения нервного импульса по двигательному нерву от мотонейрона и нервно-мышечному окончанию происходит освобождение ацетилхолина из нервно-мышечных окончаний и вследствие этого резко изменяется проницаемость мембран соответствующих мышечных волокон для ионов К+ и Na+, т. е. происходит генерация потенциалов действия.

Любая современная электромиографическая установка (независимо от ее технического устройства) включает три последовательно расположенных звена: отводящие электроды, или датчики, усилители и осциллографы (рис. 35).

Электромиограмма

Отводящие электроды могут быть контактными, т. е. непосредственно отводящими мышечные потенциалы к усилительному и регистрирующему звеньям установки. Их существует два вида. Первый вид (тип) электродов имеет отводящую поверхность до 10 мм и больше, межэлектродное расстояние до 30 мм и больше. Такие электроды позволяют уловить суммарную разность напряжений, развивающихся при возбуждении многочисленных мионевральных окончаний и мышечных волокон, расположенных под каждым электродом данной пары. Полученные при таком способе электромиограммы характеризуют «глобально» электрические колебания в мышце независимо от того, помещены оба электрода на коже или погружены внутримышечно.

Второй вид (тип) электродов имеет малую отводящую поверхность (0,65 мм и меньше) и небольшое межэлектродное расстояние (0,1 мм и меньше). При любых вариантах технического исполнения электродов они отводят «локально» колебания потенциалов от относительно ограниченных участков мышцы, от отдельных их волокон, или двигательных единиц.

Различают три основных вида электромиографии: глобальную, или поверхностную, суммарную, интерференционную — отведение биопотенциалов с помощью накожных электродов; локальную — регистрация активности отдельных двигательных единиц с помощью игольчатых электродов; стимуляционную — регистрация биопотенциалов мышцы в ответ на стимуляцию нерва, иннервирующего эту мышцу.

Выбор программы определяется конкретной задачей исследования. Так, в случаях, когда электромиограммы должны только подтвердить нормализацию функции мышцы, ее устойчивость и увеличение силы сокращения, достаточно ограничиться записью активности при максимальном произвольном сокращении мышц, интересующих исследователя. И, наоборот, в тех случаях, когда электромиография должна помочь уточнению точки поражения и выявить типичные для того или иного синдрома изменения мышечных потенциалов, программу исследования расширяют. Благодаря такому расширению установлено, что нередко патологические изменения мышечного электрогенеза могут улавливаться в покое или во время слабых тонических напряжений, тогда как при максимальном активном сокращении той же мышцы они маскируются электрической активностью сохранных двигательных единиц и не отражаются на электромиограмме.

При всем разнообразии и многочисленности двигательных реакций человека их можно схематически отнести к трем основным категориям: реакциям расслабления мышцы; — разнообразным рефлекторно обусловленным тоническим напряжениям; — произвольным или непроизвольным фазным сокращениям, обеспечивающим все виды нормальных или патологических движений. Так как в основе каждого из этих трех видов двигательных реакций, определяющих функциональное состояние нейромоторного аппарата, лежат разные физиологические и патофизиологические механизмы, то для более полной’ электромиографической характеристики каждой исследуемой мышцы нужно записывать электромиограммы как минимум во время трех функциональных состояний: в покое (при активном расслаблении мышцы), при тонических ее напряжениях и при различных (по темпу, силе, целевой установке) произвольных сокращениях.

Клиницисты широко используют расширенные приемы, уже разработанные и апробированные в клинике и эксперименте. Многообразие таких методических приемов как в общей медицине, так и в стоматологии возрастает. В преобладающем большинстве случаев авторы регистрируют электромиограммы челюстно-лицевой области при следующих функциональных пробах:

  • 1) в состоянии относительного физиологического покоя нижней челюсти (активное расслабление жевательных мышц);
  • 2) при различных нежевательных движениях нижней челюсти;
  • 3) при выполнении основной функции жевательного аппарата (жевании, глотании);
  • 4) при максимальном напряжении жевательных мышц в состоянии центральной окклюзии;
  • 5) при содружественном движении мимических мышц;
  • 6) при постукивании по подбородку молоточком (специальная проба для исследования рефлекторных реакций жевательной мускулатуры, применяемая при заболеваниях височно-нижнечелюстного сустава). Постукивание по подбородку при сомкнутых с силой челюстях вызывает рефлекторное торможение активности мышц, поднимающих нижнюю челюсть,— «период молчания», длительность которого имеет диагностическое значение. Та же проба при свободно опущенной нижней челюсти вызывает рефлекторное возбуждение жевательной мускулатуры (миостатический рефлекс), причиной которого является возбуждение рецепторов растяжения мышц (мышечных веретен).

Электромиографические исследования в стоматологии развивались по двум основным направлениям. К первому из них следует отнести работы, в которых проводился электромиографический анализ нормальной деятельности жевательной мускулатуры. Проведенные исследования подтвердили существующее, основанное на анатомических данных, представление о функции жевательных мышц. Изучение динамической деятельности жевательных мышц позволило определить средние величины количественных показателей биоэлектрической активности этих мышц у людей в норме.

В работах, относящихся ко второму направлению, сделана попытка изучить функциональные нарушения жевательных мышц при различных патологических состояниях зубочелюстного аппарата. Первые исследования этого направления были посвящены выявлению функциональных изменений жевательных мышц при различных аномалиях прикуса. Изучению ЭМГ характеристики жевательных мышц при различных частичных дефектах зубных рядов посвящены работы многих отечественных и зарубежных авторов. При этом большинство из них пришли к заключению, что отсутствие даже одного жевательного зуба приводит к снижению сократительной способности жевательных мышц, увеличению продолжительности фазы биоэлектрической активности и снижению времени биоэлектрического покоя.

Проводя электромиографические исследования жевательных мышц удалось определить оптимально допустимые пределы повышения высоты прикуса в клинических целях. Так, увеличение высоты прикуса в допустимых пределах вызывает появление биоэлектрической активности в переднем брюшке височной мышцы в состоянии относительного физиологического покоя нижней челюсти. Появление такой активности и в собственно жевательных мышцах является симптомом чрезмерного повышения высоты прикуса. Этот факт открывает определенные методические возможности для подлинного функционального определения допустимых пределов повышения высоты прикуса в клинических целях.

Глобальную электромиографию применяют также при изучении функциональных изменений жевательных мышц у беззубых больных как до, так и в различные периоды после протезирования. Проведенные исследования свидетельствуют о том, что протезирование полными съемными протезами приводит к увеличению биоэлектрической активности жевательных мышц во время жевания в протезах и после их снятия. В процессе адаптации к полным съемным протезам отмечается сокращение времени всего жевательного периода за счет уменьшения количества жевательных движений и времени одного динамического цикла. По данным ЭМГ, адаптация к тотальным протезам происходит, как правило, в течение первых 6 мес. пользования ими.

Анализируя данные ЭМГ исследований, проведенных в ортопедической стоматологии, можно заключить, что этот метод позволяет объективно оценивать эффективность различного рода протетических вмешательств, контролировать согласованность (координацию) работы симметричных мышц и перестройку координационных соотношений функций жевательных мышц при лечении аномалий прикуса, выявлять патологическое участие мимических мышц в некоторых естественных актах жевательного аппарата.

« предыдущая к содержанию следущая »

Электромиография жевательных мышц

Электромиографию начинали с предварительной подготовки больного к исследованию, разъясняли ему сущность исследования. Для снятия излишней напряженности в мышцах,

Рис. 74. Компьютерные томограммы двух пациентов с артрозами ВНЧС в двух проекциях (сагиттальной, фронтальной).
которая может возникнуть в результате волнения, страха и т. л., больному разъясняли о безболезненности и безвредности всех манипуляций. Мы пользовались шестиканальным электромиографом фирмы “Медикор», который не требует специальной тиранизированной камеры (рис. 76). Снижение помех, создаваемых электрическим полем сети переменного тока, достигалось заземлением пациента через корпус электромиографа, который заземлен с общим контурным заземлением. Отведение биопотенциалов проводили накожными биполярными электродами. Расстояние между электродами было всегда постоянным и равным 15 мм, поскольку они были фиксированы пластмассой. Электроды укреплялись в центре моторных точек височных (переднее брюшко) и собственно жевательных мышц. До настоящего времени исследователи определяли моторную точку пальпаторно и фиксировали электроды с помощью резиновой манжетки и липкого медицинского пластыря. Для идентичной записи электромиограмм в различные сроки исследования весьма важным моментом является фиксация биполярных электродов в одном и том же участке моторной точки височных и собственно жевательных мышц. С целью идентификации записи электромиограмм в разные сроки исследования в процессе лечения больных с патологией ВНЧС нами совместно с А.И. Довбенко и Н.Ю. Сеферян предложен аппарат для электромиографии височных и собственно жевательных мышц[II] (рис. 76). Он состоит из крестовины, головного фиксатора, фиксаторов с ушными оливами, фиксатора переносицы, фиксатора затылка. В фиксаторе ушной оливы над ушной раковиной в области проекции височных мышц подвижно устанавливается горизонтальная пластинка со шкалой и плоской пружиной, а под ушной раковиной на этом же рычаге прикреплен сектор со шкалой, снабженный пружинящей стрелкой с продольным пазом и делениями. Вначале пальпаторно определяют примерную локализацию моторных точек височных и собственно жевательных мышц. Кожную поверхность в данных участках тщательно обрабатывают спиртом и эфиром. Для достижения лучшего контакта “электрод — кожа» и снижения межэлектродпого сопротивления электроды смачивают 0,9% раствором хлористого натрия. Электроды устанавливают под плоской пружиной с делениями в области височных мышц и пол пружинящей стрелкой щечного полуовального сектора. Затем визуально контрольным прибором, находящимся на передней панели электромиографа, перемещая электрод по пазу пружинящих фиксаторов, находят точную локализацию центра моторной точки и контролируют качество контакта с кожей. Место локализации электродов точно фиксируют с помощью шкалы с делениями и заносят в протокол исследования. При правильном наложении электродов в состоянии относительного физиологического покоя нижней челюсти электромиограмма имеет вил изоэлектрической линии. При максимальном сжатии челюстей появление биоэлектрической активности перед записью функциональных проб проверяют и настраивают аппаратуру. Переключатель усилителя устанавливают в положение 50 мм/сек, просят исследуемого произвести несколько раз сжатие и расслабление челюстей. Регулируя переключателем, следим, чтобы максимальная амплитуда осцилляций не превышала рамки экрана или была чрезмерно малой. Замер амплитуды производят с помощью масштабной линейки. После предварительной настройки аппаратуры приступают к изучению функциональной деятельности жевательной мускулатуры. При анализе полученных данных проводилась качественная и количественная оценка электромиограмм: а)              переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) резкий или с продолжением возбуждения в фазе покоя (миологическая задержка); б)              степень размаха амплитуды колебаний во время акта жевания и при максимальном сжатии челюстей в положении центральной окклюзии; в)              продолжительность акта жевания и акта глотания в секундах; г)              ритмичность, синхронность сокращения жевательных мышц, наличие осцилляций как в состоянии относительного физиологического покоя жевательных мышц, так и в фазе БЭП во время акта жевания. Количественному подсчету подвергали амплитудные показатели элек- тромиограмм во время акта жевания и сжатия челюстей (рис. 77). Каждое смыкание зубных рядов отражается появлением биопотенциалов с различной степенью амплитуды колебаний. Величина амплитуды биопотенциалов зависит от степени сокращения жевательных мышц. При регистрации произвольного акта жевания с раздражителем (1 см3 черного хлеба) у исследуемых контрольной группы отмечается четкий переход фазы биоэлектрической активности (БЭА) в фазу биоэлектрического покоя (БЭП) всех исследуемых групп мышц. С целью получения исходных и сопоставления электромиогра- фических данных, полученных на больных с патологией сустава с показателями нормы, дополнительно проводилось обследование височных и жевательных мышц у 10 практически здоровых лиц в возрасте от 16 до 36 лет с интактными зубами и ортогнастическим прикусом (контрольная группа). 

« предыдущая к содержанию следущая »

А так же в разделе «Электромиография жевательных мышц»

</td></tr>

Электромиография жевательных и мимических мышц позволяет определить изменения функционального состояния мышц в фазе жевательного движения, а также при мимических нагрузках. Данный метод позволяет объективно оценивать степень выраженности патологического процесса при аномалиях окклюзии, протезировании зубов, при болевых синдромах челюстно-лицевой области и смежных областях и т.п. Данные, полученные в ходе исследования, являются объективными критериями правильности проведённого протезирования, ортодонтической коррекции, изменения высоты прикуса. Кроме того, они позволяют стоматологу выявить пограничные патологические процессы, которые впоследствии могут привести к развитию болевых синдромов челюстно-лицевой области.

При анализе показателей силы, развиваемой при мышечном сокращении необходимо фокусировать внимание на противодействиях силе, которые для упрощения могут быть сведены к окклюзионному противодействию (силе сжимания) и противодействию связи (сокращениям нагружающим височно-нижнечелюстной сустав). В нормальном состоянии действие и противодействие уравновешиваются, эргономика системы находится в компенсированном состоянии (аномальная нагрузка на периодонт, эрозии при стачивании зубов и т.д.).

Интуитивно понятно, что стачивание будет влиять на функцию со временем одинаково на все компоненты, но изменение даже компенсированное развиваемого усилия будет увеличивать нагрузку на систему, и вызывать при ухудшении ситуации нарушение динамического равновесия, усугубляя износ компонентов.

Например, возникновение торсионной нагрузки на нижней челюсти вызывает перегрузку суставных элементов и одновременно аномальную стимуляцию пародонтальных рецепторов, которые адаптируются к более высокому порогу и не реагируют, следовательно способствуют поддержанию аномальной нагрузки. Компенсаторные изменения афферентных окончаний изменяют центры двигательного равновесия. Такие функциональные изменения, сохраняющиеся длительное время, вызываю органические изменения (суставной хруст, пародонтальные боли, патологическая стираемость, миофасцииты и др.).

Следуя этой же логике можно охарактеризовать активность мышц на основе их анатомического расположения. При этом височная мышца входит в передней части в жевательную и проявляет постуральную активность, то есть эта мышца предназначена для уравновешивания гравитационных сил, действующих на нижнюю челюсть. Кроме того, она отвечает за движение, которое перемещает нижнюю челюсть в положение покоя, близкое к положению окклюзии, для достижение которого необходимо участие жевательной мышцы в виде изометрического сокращения при сжатии. Зная характеристики кривизны окклюзионной плоскости (кривая Шпея в сагиттальной плоскости и кривая Вилсона во фронтальной) можно предположить последовательное установление контактов до достижения полного смыкания.

Дентальные межбугорковые контакты в передних отделах незначительно опережают таковые в задних, расположенных в непосредственной близости двигательной линии жевательной мышцы.

Окклюзионный контакт, преобладающий в антеролатеральных отделах (на первом и втором премоляре) определяет передний центр тяжести окклюзии и связан с преобладанием мышечной активности жевательной мышцы.

Таким образом, поскольку среднее значение выражено в мкВ за определенный временной интервал, оно может помочь охарактеризовать область преобладающих контактов и окклюзионный центр тяжести.

Статья предоставлена компанией «Валлекс М»

Регулярно читаете статьи по специальности? Подпишитесь на нашу рассылку.

Подписаться1(18).jpg

<font>Рис. 1.Дифференциальная мышечная активность собственно-жевательных (ось x) и височных (ось y) мышц справа и слева при нормальной нейромышечной активности. Каждая точка представляет одиночный цикл жевания на правой стороне (I Декартовский квадрат) и на левой стороне (III Декартовский квадрат). Показаны эллипсы относительного доверия Хо-теллинга для 95% уровня доверия.</font>

<font>Для оценки лево- и правосторонних циклов жевания проводились тесты с симметричными мышечными паттернами, от центров двух доверительных эллипсов (при жевании на правой и на левой сторонах), для каждого пациента вычислялся индекс симметричности жевания (SMI %) (Феррарио и др. 1999). SMI находился в пределах от 0% (асимметричный мышечный паттерн) до 100% (симметричный мышечный паттерн) (Феррарио и др. 1999).</font>

<font>Анализ данных</font>

<font>Для всех показателей, полученных в контрольной и исследуемой группах, проводился статистический анализ. Средние значения сравнивались тестом post hoc. Уровень значимости был установлен как 5% (p05).</font>

<font>Результаты </font>

<font>Средний возраст существенно не различался в трех группах (таб. 1). Также существенно не различалась симметрия ЭМГ-активности жевательных мышц (индекс POC), а также мышечная симметрия. У пациентов с несъемными протезами с опорой на имплантаты и членов контрольной группы индекс POC височных мышц был существенно выше, чем у пациентов со съемными протезами (p05). Индекс «Торк» был немного ниже в контрольной группе, чем в обеих подгруппах пациентов, но различие не было статистически достоверным.</font>

<font>В группах пациентов индексы жевательной активности при максимальном сжатии зубов (как с ватными валиками, так и в максимальной окклюзии) составляли только 40–47% от значений в контрольной группе, различие было статистически значимым. Не обнаружено различий относительной активности (отношение ЭМГ-потенциалов в тесте при полной окклюзии и с ватными валиками) в исследуемой и контрольной группах. Все пациенты показали схожие уровни ЭМГ-активности в обоих тестах.</font>

<font>Частота жевания не изменялась в трех группах. Эллипсы доверия, вычисленные в контрольной группе, были на 13–51% меньше, чем в исследуемой группе, однако большая вариабельность внутри каждой из подгрупп не дала возможности определить статистическую значимость. Однако существенные различия были обнаружены для индекса жевательной симметрии SMI, он был больше в контрольной группе, чем в обеих подгруппах пациентов.</font>

<font>В контрольной группе все центры эллипсов при одностороннем жевании располагались в 1-м квадрате (жевание на правой стороне) и в 3-м квадрате (жевание на левой стороне) в Декартовой системе координат, что говорит о превалирующей активности мышц на рабочей стороне (рис. 2). В исследуемой группе только у двоих пациентов центры эллипсов располагались в правильных квадратах. Относительно большая активность жевательной мышцы на нерабочей стороне была обнаружена у троих пациентов со съемными протезами и у троих пациентов с несъемными протезами с опорой на имплантаты (правостороннее жевание с эллипсами, расположенными во втором квадрате, левостороннее жевание с эллипсами в четвертом квадрате). Височная мышца на нерабочей стороне превалировала над височной мышцей с рабочей стороны у троих пациентов с несъемными протезами и у троих пациентов со съемными протезами (четвертый квадрат при правостороннем жевании, второй квадрат при левостороннем жевании).</font>

<font>                     2(11).jpg</font>

<font>Таблица 1.Максимальное произвольное сжатие зубов и одностороннее жевание резинки у пациентов с протезами с опорой на имплантаты и в контрольной группе</font>

<font>                              3(10).jpg</font>

<font>Рис 2. Расположение центров эллипсов при одностороннем жевании у отдельных пациентов (ось x — правостороннее жевание, ось y — левостороннее жевание). Каждый символ отражает пациента (черные квадраты — контрольная группа, пустые квадраты — несъемные протезы, круги — съемные протезы). Нормальное жевание должно отражаться в I квадрате (правостороннее жевание) и в III квадрате (левостороннее жевание). </font>

<font>Дискуссия</font>

<font>Все пациенты, участвующие в данном исследовании, были удовлетворены своими протезами, анамнез отражал адекватную жевательную эффективность. В самом деле, почти все статические индексы мышечного баланса (POC и TC) не различались в трех группах. Однако в обеих группах пациентов наблюдалась существенно меньшая ЭМГ-ктивность (мышечный потенциал) в сравнении с контрольной группой (таб. 1). Также, у тех же пациентов, при динамическом тесте, нейромышечная координация была различной, с измененной активностью мышц на нерабочей стороне и несимметричным жеванием (рис. 2).</font>

<font>Нулевая гипотеза данного исследования была отвергнута для динамической задачи (жевание), но ее нельзя отвергнуть для статической задачи (максимальное сжатие зубов).</font>

<font>В самом деле, в нескольких исследованиях уже отмечалось, что измеренная жевательная способность и субъективный опыт жевания коррелируют слабо (Slagter et al 1992, Geertman et al. 1999). Субъективный опыт и объективное осуществление жевания с полными зубными протезами определяются мультифакторно. Например, считается, что протезы с опорой на имплантаты улучшают силу сжатия в прикусе в большей степени, чем жевательную эффективность (FontijnTekamp et al. 2000). В данном исследовании сила сжатия в прикусе не измерялась, однако ЭМГ-ктивность при максимальном сжатии зубов можно рассматривать как полезную аппроксимацию (van Kampen et al. 2002). Мышечная активность, а именно интегральные области ЭМГ-отенциалов по времени уже использовались как глобальный индекс мышечной активности как в статических, так и в динамических тестах (Mioche et al. 1999; Феррарио и др. 2002). Ортопедическая реконструкция не смогла восстановить значения активности до показателей, характерных для контрольной группы. Такие результаты характерны и для других исследований (FontijnTekamp et al. 2000).</font>

<font>Для объяснения данных результатов можно указать несколько факторов. Мы уже упоминали, что пациенты не выбирались случайным образом, и вид протезных конструкций, установленных на имплантаты, выбирался независимо от данного исследования. Пройти ЭМГ-сследование было предложено только пациентам, удовлетворенным своими протезами. С этой точки зрения, испытуемые представляли собой удобную группу, и экстраполировать полученные данные на более широкую группу следует с осторожностью. Фактором, уменьшающим мышечную активность, может быть мышечная атрофия, произошедшая в период, когда у пациентов не было зубов. Более длительное время наблюдения позволило бы мышечной активности восстановиться до уровня контрольной группы.</font>

<font>Число окклюзионных элементов несколько различалось в трех группах, у пациентов с протезами с опорой на имплантаты их было меньше. Тем не менее, 10 пар контактов (20 хорошо распределенных зубов) считается достаточным для оптимального выполнения жевания (BudtzJorgensen 1996; McGrath, Bedi 2001).</font>

<font>Тест с жевательной резинкой показал большую вариабельсть внутри групп с существенными различиями эллипсов доверия (табл.1). В самом деле, большая вариабельность была обнаружена уже в группе с протезами с опорой на имплантаты (Jacobs, van Steenberghe 1993a, 1993b). Вариабельность может быть вызвана различиями в чувствительной иннервации тканей полости рта (Garrett et al 1995). Тактильная функция имплантата, очевидно, отличается от естественного зуба. Отсутствие периодонтальной связки должно компенсироваться экстероцептивной функцией рецепторов, расположенных в десне, слизистой оболочке альвеолярного гребня и кости (Jacobs, van Steenberghe 1993a). Существует предположение, что протезы с опорой на имплантаты могут активизировать удаленные проприоцепторы путем передачи вибрации через кости лица (Gartner et al. 2000). Более того, после реабилитации с помощью съемных протезов с опорой на имплантаты были обнаружены изменения иннервации слизистой оболочки рта (Garzino et al. 1996).</font>

<font>Вариабельность, обнаруженная в контрольной группе, может быть вызвана возрастным фактором. Например, в предыдущих исследованиях, проведенных со здоровыми подростками и молодыми взрослыми, группы были гораздо более гомогенные. Однако частота жевания хорошо воспроизводима и не зависит от возраста (Феррарио и Сфорца 1996, Феррарио и др. 1999).</font>

<font>Одним из факторов может быть различие в привыкании к протезам. Все пациенты проходили ЭМГ-сследования не ранее 3 месяцев после завершения ортопедического лечения. Предыдущие исследования показали, что через 3 месяца после успешного лечения сила прикуса восстанавливается до своих предшествующих значений, и ЭМГ-аттерны при максимальном сжатии зубов соответствуют паттернам у людей, имеющих зубы (Gartner et al. 2000).</font>

<font>Различные паттерны мышечного напряжения уже наблюдались после ортопедического лечения. Пациенты использовали более широкую группу мышц, чем участники контрольной группы с естественными зубами, с расширенными двусторонними окклюзионными паттернами, что сравнимо с более частым односторонним жеванием и прикусом у людей с зубами (Ogata, Satoh 1995). При максимальном сжатии зубов и жевании, у пациентов с протезами с опорой на имплантатах одновременно активировалось большее число мышц ( Gartner et al 2000; Kampen et al. 2002). Эти различия были недавно связаны с различиями свойств материалов кортикальной кости нижней челюсти (SchwartzDabney, Dechow 2002).</font>

<font>Различные паттерны были измерены у пациентов с зубными протезами с отличной жевательной функцией в сравнении с пациентами со слабой функцией. При одностороннем жевании хорошая функция была связана с одновременном сокращении жевательных мышц с рабочей и с нерабочей стороны (Garrett et al 1995). Похожее поведение было обнаружено в данном исследовании, хотя ограниченное число пациентов не позволило провести статистический анализ данных, представленных на рис. 2.</font>

<font>Несмотря на то, что в данном исследовании анализировались только 4 жевательные мышцы, и нельзя было сделать никаких выводов о работе крыловидных или поднижнечелюстных мышц, можно предположить, что после протезирования с опорой на имплантаты пациенты используют более широкую группу мышц для таких задач, как максимальное сжатие зубов или одностороннее жевание. Также это действие не является хорошо скоординированным, и право-и левостороннее жевание гораздо менее симметрично, чем в контрольной группе. Возраст, все же мог играть свою роль, поскольку у здоровых подростков наблюдается большая симметрия при жевании, чем у более старших участников данного исследования (Феррарио и др. 1999).</font>

<font>Настоящее поверхностное ЭМГ-сследование статической (сжатие зубов) и динамической (жевание) задач показало, что на нижней челюсти функциональные параметры несъемных и съемных протезов с опорой на имплантаты эквивалентны. Эти данные соответствуют исследованиям Feine et al (1994). Также при жевании оба типа ортопедических конструкций уступали естественным зубам.</font>

<font>Настоящие данные были собраны через 3–6 месяцев после ортопедического лечения, и результаты нельзя экстраполировать на более длительные сроки ношения протезов. Дополнительные исследования более отдаленных результатов могут дать лучшее понимание изменений нейромышечного контроля в связи с ортопедическим лечением.</font>

<font>Заключение</font>

<font>Электромиографический анализ сжатия зубов и жевания показал, что несъемные и съемные протезы с опорой на имплантаты функционально эквивалентны. Нейромышечная координация при жевании у пациентов с протезами с опорой на имплантатах уступала координации у обследуемых контрольной группы с естественными зубами.</font>

<font>Статья предоставлена компанией «Валлекс М»</font>

Регулярно читаете статьи по специальности? Подпишитесь на нашу рассылку.

ПодписатьсяИспользуемые источники:

  • https://medbe.ru/materials/gnatologiya/elektromiografiya/
  • https://ortostom.net/content/metody-issledovaniya-biomehaniki-zhevatelnoy-sistemy
  • http://www.med24info.com/books/diagnostika-i-ortopedicheskoe-lechenie-zabolevaniy-visochno-nizhnechelyustnogo-sustava/elektromiografiya-zhevatelnyh-myshc-13142.html
  • https://stomport.ru/articles/elektromiograficheskie-issledovaniya-v-stomatologii
  • https://stomport.ru/articles/elektromiograficheskaya-ocenka-neyro-myshechnoy-koordinacii-zhevatelnyh-myshc-u-pacientov-s

Рейтинг автора
5
Подборку подготовил
Андрей Ульянов
Наш эксперт
Написано статей
168
Ссылка на основную публикацию
Похожие публикации